#PreppinData

I just finished week 2 of the  Preppin Data challenge and wanted to walk through my approach. One of the things I love about Tableau and Tableau Prep is that there are a number of different ways to get at the same result.

This week Carl & Jonathan gave us a file that had a big header, names that needed to be cleaned, and metrics that needed to be moved to columns. The output needed to be 6 columns and 14 rows.

After setting my connection to the file the first thing I did was check the Use Data Interpreter box. This helper removed the unnecessary header at the top of the file.

PreppinWeek2_A
check the data interpreter box to remove the unnecessary header

Whenever I built something in Tableau Prep I like to always add a clean step after my connection to get a sense of what is in the data. When I did this I noticed that my city field had a value called “city”. I knew from looking at the initial file that this was a secondary header so I right clicked on the value of city and selected exclude.

PreppinWeek2_B
remove the secondary header row

At this point I also added an aggregate to see how many rows were in my data set. I like to add these as I build out a flow to get a sense of how my record counts change as I build out different steps.

I added another clean step and I did this because I like to partition out my changes when I build something new (I’m quirky). I could have done these all in the first step. In this step I grouped the various city names by pronunciation This took care of all but two values. I edited the group and manually added “nodonL” to London and “3d!nburgh” to Edinburgh. In this step I also created the new header field which combined the metric and the measure and then removed those fields as they were no longer needed.

PreppinWeek2_C
used pronunciation group by with a manual add, created new field and removed unnecessary fields

The next step was to move the values from the rows to columns. This is done in a pivot step. Most of the people I help with Prep think Pivot = Pivot table and are confused when they add that step. Pivot will reshape your data.  My pivoted field is my new field that I created in the prior step and my field to aggregate is the value field.

PreppinWeek2_D
this moves the data from rows to columns

At this point I also added an aggregate step to make sure I had 14 rows as the instructions called for. This is the full view of my flow.

PreppinWeek2

Thanks for reading and happy preppin!

Fairway Ladies Year in Review

My goal for 2019 is to produce more personal projects on my Tableau Public page than I have in the past. I’m kicking that off by looking at the 2018 golf season for my golf group. The Fairway Ladies of Franklin Park play at the William J Devine golf course in Boston MA. To get a high level summary of what our season looked like I pulled a report from GHIN (the program we use to keep our handicaps).

I designed the dashboard to be a wide layout and kept it with a simple color scheme. I’m pleased with how it turned out. I went back and forth on the score differential chart a number of times and finally settled on the bar code chart.

I’m looking forward to doing more of this in 2019!

Fairway Ladies 2018 Season

2018 Tableau Acknowledgements

To keep with the popular year end theme of year in review here is my list of acknowledgements to the Tableau Community in 2018. These are in no specific order.

Susan Glass (@SusanJG1& Paula Munoz (@paulisDataViz )  – I “met” Susan & Paula via Twitter and then got to meet them in person at the Boston Tableau User group this year. I’ve been a sporadic BTUG attendee for years but never really met anyone at these user groups. Sometimes the user group meetings felt like riding the T – unless you already knew someone on the train you avoid eye contact with everyone else. It is great to have some real live Tableau friends now.

Tom O’Hara (@taawwmm– Tom is Tableau support at Comcast. The range of questions he answers on our internal Slack & Teams Tableau boards is amazing. He’s always helpful and supportive. I hosted Sports Viz Sunday in September and was thrilled that Tom supported me by entering a viz. It’s great to have work colleagues support your personal Tableau endeavors.

Josh Tapley (@josh_tapley& Corey Jones (@CoreyJ34 ) Josh & Corey run the Philadelphia Tableau User group and gave me my first opportunity to present at a TUG. I did a live demo Tableau Prep and enjoyed presenting more than I thought I would. I was also blown away by Corey at the TUG. There were a number of St. Joes students who presented their work after they were done Corey acknowledged something he liked about each one of their vizes.

Ann Jackson (@AnnUJackson ) & Luke Stanke (@lukestanke ) – Ann & Luke put out my favorite podcast Hashtag Analytics https://bit.ly/2QTiAJW. Their podcasts are great conversations on data and the Tableau community. You’re missing out if you aren’t listening to these.

The SportsVizSunday Guys (@SimonBeaumont04 , @JSBaucke , @sportschord ) – Thank you for asking me to host #SportsVizSunday in September! Being asked to host September’s challenge was big for me. This was the first time I’d been invited to be more involved in a data viz project. There is a big Tableau community on Twitter and at times I’ve felt a little lost because I don’t create flashy work and I don’t have a gazillion followers. When Simon asked me to host I felt great. We all like to be recognized from time to time (even the introverts like this).

Sarah Bartlett (@sarahlovesdata ) – Sarah is the Tableau ambassador on Twitter. No one else in the community welcomes and supports people like Sarah does. She also promotes new folks every week with #Tableauff. She’s also got mad skills and it was awesome to see a women in the IronViz Europe finals this year.

Chantilly Jaggernauth (@chanjagg ) & Amar Donthala (@AmarendranathD )- Chantilly & Amar created a Millennials & Data (millennialsanddata.com ) program this year to prepare millennials to enter the data driven world. This is in addition to their full time jobs at Comcast. Their first cohort of 16 produced amazing work and they all passed their Tableau Desktop Specialist Certifications. I see great things in the future for Chantilly & Amar!

There are a number of other folks who have influenced me in 2018. This list is my no means inclusive of everyone but these are folks that I wanted to highlight.

R&D Makeover Monday

In last week’s Makeover Monday recap Andy reminded us that this is a makeover. The intention is to evaluate what is good and what can be improved with a viz and create a new one with those points in mind. People can use makeover Monday for what they what but the intention is to improve upon the selected viz.

I normally try to take that approach but I don’t often document what I like and what can be improved so for the next few weeks I am going to attempt to put my thoughts and approach together here.

The viz this week comes from HowMuch.net and looks at R&D spending across the globe.

R&D-AROUND-THE-WORLD-22c6

I like that the person who created this tried a different approach to displaying the information. They want the reader to focus on the large circles in the middle for the US, China, Japan, and Germany. What I think can be improved is the amount of clutter in the viz. There is a lot going on here between the circles, the map, the flag, and the multiple colors. I think a better approach would be to simplify the viz and draw the attention to the top 5 countries. I don’t think the flag and the country shape add to the story so I would remove them.

I selected a treemap for this week’s makeover. While treemaps may not always be the best option to compare values I think in this case it works because I want to highlight the contribution of the top 5 countries and I don’t want to compare all of the countries against each other.

RD Spend

Overall I think this meets the goal of drawing attention to the top countries.

Swing Your Swing

Last week the Dick’s Sporting Goods ad with Arnold Palmer popped into my head. If you haven’t seen it before it’s worth the 50 odd seconds.

In the add Palmer says:

“Swing your Swing.
Not some idea of a swing.
Not a swing you saw on TV.
Not the swing you wish you had.
No, swing your swing.
Capable of greatness.
Prized only by you.
Perfect in its imperfection.
Swing your swing.
I know I did”

I see “swing your swing” as be true to yourself in your approach. In golf all that truly matters is the contact with the ball. How you get to that point is where you “swing your swing”. There are methods and instructions that make it easier to square the club at impact, however, do what works for you. Explore your swing. Figure out your tendencies good and bad. Swing your swing. Don’t become so mechanical that you lose sight of you.

Because I have a golf “issue” I immediately applied this my data viz work. My goal in data visualization is to depict data in a manner that clearly communicates the insights in the data. Like golf, there are a number of best practices and methods on how to do this. And like golf there are different approaches to get to the same end point. Take a look at #makeovermonday or #dataforacause and you will see an number of people approach the same data set in a number of different ways. You’ll see things that run the range of simple bar charts to radial charts. This is where people “viz their viz”.

In both golf and data viz your personal style is important, however, if your style trumps your success or ability to communicate effectively you need to refine your style. It is hard to square the club consistently when you come over the top and it is hard to communicate data effectively when you have a pie chart that uses 20 different colors.

So how do you get there?

Practice, practice, practice.
Experiment – #makeovermonday is a great opportunity for this.
Learn from others – be inspired by their work but don’t seek to duplicate someone else’s style.
Have fun!

 

 

makeover Monday week 7

This week’s exercise looked at Valentine’s day spending in the US. I liked the original viz – the color scheme seemed appropriate for the topic. I liked the images and felt the size and images conveyed what they were intended.

After setting up the data set I started creating the calculated fields I needed:

  • The first was to create a date field from the Year field in the dataset – DATE(“02″+ “/” + “14” + “/” + STR([Year])) .
  • I then created a couple of measures fields for the % Buying and the Avg Net Spend – IF [Metric] = ‘Percent Buying’ THEN [Measure] END and IF [Metric] = ‘Net Average Spend’ THEN [Measure] END

I wanted a custom shape for whatever I ended up creating – I found a free clip art heart online bought that into PowerPoint did a couple of updates to it and saved it to my custom shapes file.

After creating a few different views I decided to keep it simple and focus on what people were buying for Valentine’s day from 2010 – 2016. I tried line charts and bar charts with the hearts and then thought this may be a good time to give a bump chart a try.

Matt Chambers has a great post on his site that walks you through how to create a bump chart and I used that as a refresher. In order to get the bump chart to work I had to create a couple of more calculated measures:

  • Rank for the % Buying – RANK_UNIQUE(SUM([% Buying]))
  • Prior Year Ranking – LOOKUP([Rank % Buying],-1)
  • Difference From Prior Year – IF [Rank % Buying] > [Prior Year Ranking] THEN ‘down from the prior year’
    ELSEIF [Rank % Buying] = [Prior Year Ranking] THEN ‘the same as the prior year’
    ELSEIF  [Rank % Buying] < [Prior Year Ranking] THEN ‘up from the prior year’
    END

I wanted the prior year and difference from prior year for the tooltip.

After getting the bump chart working I tested out a couple of different color schemes and found the purple to be a bit easier on the eyes than the red I had intended on using.

There is a lot more I could have done with the dataset this week, but, overall I’m pretty happy with what I created. The color scheme is different for me and I was happy with the custom shape and the bump chart. For the next few months I’m going to experiment more with the design side.

momvalentines